

Multiphysics Simulation of Nanodevices

Luca Pierantoni, Davide Mencarelli

Università Politecnica delle Marche, Ancona, Italy

l.pierantoni@staff.univpm.it, d.mencarelli@staff.univpm.it

UNIVERSITÀ Politecnica Delle Marche

OUTLINE

- **Research Areas and Activities**
- Nano- /smart material in devices/systems
- □ The computational platform for the multi-physics modeling
- **Examples**

Electromagnetics – Nanotechnology group : Research Areas and Activities

- Analysis EM + Quantum / thermal transport in nano-structures
- Computational platform for the multi-physics modeling of nano-to-meso-scale systems
- Atomistic (ab-Initio) simulations
- Molecular Dynamics (MD) simulations
- Modeling/design of opto-mechanical systems
- Opto-electronics and microscopy

Electromagnetics – Nanotechnology group : Research Areas and Activities

- Analysis EM + Quantum / thermal transport in nano-structures
- Computational platform for the multi-physics modeling of nano-to-meso-scale systems
- Atomistic (ab-Initio) simulations
- Molecular Dynamics (MD) simulations

... a typical scenario where the mutiphysics modeling becomes necessary a technological platform incorporating nano- / smart-materials

- nano-structured material regions (CNT, graphene etc...)
- embedded in micro-/mm regions
- Extreme multi-scale: geometrical/electrical aspect ratios
- Multi-physics (EM+transport+thermal+...) phenomena

M. Dragoman, L. Pierantoni, et al., APPLIED PHYSICS LETTERS 106, 2015

Graphene antenna

Graphene thicknss: < 1 nm

rectifying antenna

MIM diode based is a 6-nm-thick HfO₂

M. Aldrigo, M. Dragoman, M. Modreanu, et al., 2018, https://doi.org/10.1109/TED.2018.2835138

... a typical scenario where the mutiphysics modeling becomes necessary a technological platform incorporating nano- / smart-materials

- nano-structured material regions (Quantum models)
- embedded in micro-/mm regions (EM models)
- Extreme multi-scale: geometrical/electrical aspect ratios
- Multi-physics (EM+transport+thermal+...) phenomena

... a typical scenario where the mutiphysics modeling becomes necessary a technological platform incorporating nano- / smart-materials

- **nano-structured material regions (Quantum models)**
- embedded in micro-/mm regions (EM models)
- **Extreme multi-scale: geometrical/electrical aspect ratios**
- Multi-physics (EM+transport+thermal+...) phenomena

APPLIED PHYSICS LETTERS 106, 2015

GreEnergy scenario: rectenna + diode + supercap + ...

Schematic view of the future combined system architecture

GreEnergy Summer School 2022

Bridging from atomistic to continuum level

Interfacing mathematical models (PDEs)

Bridging from atomistic to continuum level

Interfacing mathematical models (PDEs)

Bridging from atomistic to continuum level

Interfacing mathematical models (PDEs)

GreEnergy Summer School 2022

Bridging from atomistic to continuum level

Interfacing mathematical models (PDEs)

The theoretical-computational platform

Computational platform: new home-made interface COMSOL - MATLAB

- Quantum transport,
 Schrödinger/Dirac
- SM, NEGF
- DFT analysis
- In-house software:Fortran, Matlab, C, etc.
- Quantum W, Gromacs

- DC AC analysis
- Full-wave EM analysis of FET in linear regime
- Equivalent circuits
- COMSOL multiphys
- CST Microwave S.
- HFSS Ansoft
- EM3DS Univpm

.

Block scheme of the Atomistic Simulations Method

DFT and Molecular Dynamics simulations

In silico methods based on combined DFT-MD simulation

GreEnergy Summer School 2022

Quantum and EM Models at continuum level (ii)

- 1) Quantum models are coupled to Maxwell eqs. in time- and/or freq. domain
- 2) combined electromagnetic-transport phenomena
- 3) Multi-scale numerical techniques (FEM, FDTD, ...)

GreEnergy Summer School 2022

Examples

- Graphene Antenna
- MoS₂ FET
- Schrödinger Poisson eqs.: CNT FET
- Dirac Maxwell eqs.: Ballistic Ratchet effect on graphene

Examples

Graphene Antenna

- MoS₂ FET
- Schrödinger Poisson eqs.: CNT FET
- Dirac Maxwell eqs.: Ballistic Ratchet effect on graphene

Tunable Graphene-based Antenna

Pierantoni

- microwave slot antenna in a CPW based on graphene
- Antennas fabricated on a high-resistivity Si wafer
- 300 nm SiO₂ layer
- A CVD grown graphene layer is transferred on the SiO₂
- Reflection parameter can be tuned by a DC voltage
- 2D radiation patterns in the X band (8–12 GHz)

GreEnergy Summer School 2022

Graphene: the constitutive relation is based on the Kubo-Drude model (strictly valid for monolayer/on air)

Graphene can be described by a surface conductivity tensor tobe inserted in a EM computation

$$\underline{\underline{\sigma}}_{graphene} = \underline{\underline{\sigma}'} + j \underline{\underline{\sigma}''}$$
$$\underline{J} = \underline{\underline{\sigma}}_{G} \underline{E}$$

Kubo-Drude Formulation (monolayer/on air)

$$\sigma_{\pm} = \frac{i e^2}{\pi \hbar} \frac{1}{\hbar \omega \pm i \gamma} \int_0^\infty d\varepsilon \varepsilon \left(\frac{\partial f_D(\varepsilon)}{\partial \varepsilon} - \frac{\partial f_D(-\varepsilon)}{\partial \varepsilon} \right) \quad \text{intraband} \\ - \frac{i e^2}{\pi \hbar} \frac{1}{\hbar \omega \pm i \gamma} \int_0^\infty d\varepsilon \left[\frac{f_D(\varepsilon) - f_D(-\varepsilon)}{1 - \left(\frac{2\varepsilon}{\hbar \omega \pm i \gamma}\right)^2} \right] \quad \text{interband} \\ f_D(\varepsilon) = \frac{1}{1 + e^{\frac{\varepsilon - \mu}{kT}}} \quad \text{Fermi-Dirac Distribution} \quad \gamma = 2\pi/\tau$$

Examples

- Graphene Antenna
- MoS₂ FET
- Schrödinger Poisson eqs.: CNT FET
- Dirac Maxwell eqs.: Ballistic Ratchet effect on graphene

MoS2 – based Field Effect Transisitor (FET)

GOAL: derivation of the MoS₂ channel permittivity (conductivity)

The device: 3.5 m. Out-of-plane thickness (width): 6.8 um Gold contacts (orange) are 75 nm thick, Active region (magenta): --- > number of layers Thickness SiO2 gate insulator (green) is 300 nm, The n+ Si gate (plum) has a thickness of 2 um

MoS₂

- Very HIGH ON/OFF ratios >10⁷ (vs 10⁶ of CMOS)
- Lower mobility (many defects) vs. graphene/
- Eg = 1.8 eV

Theoretical-computational route

- 1. study of the material (MoS2) at the atomistic level
- 2. derivation of constitutive relations (CR)
- 3. insertion of the CR in the full-wave solver (COMSOL)
- 4. Coupling of Poisson and transport (drift) eqs. using the semiconductor physics module by COMSOL
 - Hafnium-Zirconium Oxide (HfxZr(1-x)O2, x = 0.3)
 - as a substrate ferroelectric material
 - high tunability
 - CMOS technology compatibility

MoS2 – based Field Effect Transisitor (FET)

GOAL: derivation of the MoS2 channel permittivity (conductivity)

The device: 3.5 m. Out-of-plane thickness (width): 6.8 um Gold contacts (orange) are 75 nm thick, Active region (magenta): --- > number of layers Thickness SiO2 gate insulator (green) is 300 nm, The n+ Si gate (plum) has a thickness of 2 um

MoS₂

- Very HIGH ON/OFF ratios >10⁷ (vs 10⁶ of CMOS)
- Lower mobility (many defects) vs. graphene/
- Eg = 1.8 eV
- Electron affinity: 4.7 eV
- Electron (hole) mobility: 10 cm² V⁻¹ s⁻¹ (10 cm² V⁻¹ s⁻¹)
- Electron (hole)effective mass: $0.5 \times m_e (0.5 \times m_e)$
- Defect n-type doping: 1.5×10^{18} cm⁻³

Atomistic Simulations

possibility of simulating defects and particular contacts with the substrate

GreEnergy Summer School 2022

Bandgaps decreased with increasing MoS2 layers' number [Zhao, C M Wei, L Yang, M Y Chou. Phys Rev Lett. 2004;92(23):236805] A direct correlation between the number of layers and the dielectric constant value was observed

HfO2: Comparison of DFT simulations vs. data reported in the literature

GreEnergy Summer School 2022

Comparison to experimental results

Atomistic Simulations

Derivation of constitutive relations

and the set

 10^{-5}

. . . .

Examples

- Graphene Antenna
- MoS₂ FET
- Schrödinger Poisson eqs.: CNT FET
- Dirac Maxwell eqs.: Ballistic Ratchet effect on graphene

Schrödinger – Poisson eqs. coupling

Modeling of sensors, FETs, quantum dots, ...

Quantum capacitance, effective transconductance, etc....

Schrödinger – Poisson eqs. coupling

- Possibility to evaluate multiwall/multichannel structures
- **Rigorous analysis (no equivalent circuit approximations)**

CNT Matrix

Simulation method

Simulation workflow

Schrödinger Equation model for CNT

describes the quantum mechanical behaviour of a charge carrier

CNT-based Devices: self-consistent solution of the combined Poisson- Schrödinger eqs.

Schrödinger equation $\nabla^{2} \psi = -\frac{2m_{0}}{\hbar^{2}} \left[E + V \right] \psi$ source $q \int |\psi(\mathbf{r}, E)|^{2} dE = \rho_{T}$ normalization condition

Poisson equation

- **Schrödinger equation for all the transport channels (modes)**
- multi-wall and multi-band coherent carrier transport
- **V** is the electrostatic potential satisfying the Poisson equation

D. Mencarelli, T. Rozzi, L. Pierantoni "Modelling of multi-wall CNT devices by self-consistent analysis multichannel transport" IOP Science Nanotechnology,

MULTIPHYSICS MODELING

...we developed an home-made solver

D. Mencarelli, L. Pierantoni,

Modeling of Multi-wall CNT Devices by Self-consistent Analysis of Multi-channel Transport, Nanotechnology, vol. 19, Number 16, 2008

Analysis of CNT Transistors

multi-wall and multi-band coherent carrier transport

The Schrödinger equation is written for each individual transport channel

V is the electrostatic potential satisfying the Poisson equation

GreEnergy Summer School 2022
iterative solution

 E_{vac} is the vacuum energy R_{G} radius of the gate electrode $\Phi_{g}, \Phi_{d}, \Phi_{s}$, the work functions

 $E_g^{n,m}$ *n*-th energy gap of the *m*-th wall $\chi_T^{n,m}$ is the electron affinity

GreEnergy Summer School 2022

Transmission Line approach

 $\beta_{h,e}^{n,m}(L_1) = \sqrt{E - U_{h,e}^{n,m}(L_1)} \quad ; \quad \beta_{h,e}^{n,m}(L_2) = \sqrt{E - U_{h,e}^{n,m}(L_2)}$

Luca Pierantoni

GreEnergy Summer School 2022

Analysis of CNT Transistors

multi-wall and multi-band coherent carrier transport

The Schrödinger equation is written for each individual transport channel

V is the electrostatic potential satisfying the Poisson equation

GreEnergy Summer School 2022

CNT-based FET: 3D Full-Wave simulation + Schrödinger – Poisson eqs. coupling

- Substrate SiO_2
- Oxide HfO₂
- Contacts Gold

CNT (16,0)

- R = 0.63 nm
- L = 50 nm
- Spacing 0.50 nm

Results – Current reduction

2nd CNT 50-40% less 5th CNT 90-80% less

 I_n Current in the nth CNT I_1 Current in the 1st CNT

Results – Current saturation

- Distance from the gate
- Shielding from above CNTs

CNTs 1-5 more than 80% of $\rm I_{tot}$

Results – Coupling

5 CNT 6% reduction 10 CNT 9% reduction

Uncoupled \rightarrow One row at the time Coupled \rightarrow All rows at the same time

GreEnergy Summer School 2022

Results – Potential

Variation of the channel potential due to carriers in the CNT array

Shield Effect

Future works

- Presence of metallic nanotubes
- Hamiltonian terms for charge correlation
- Mechanics modes analysis
- RF parameters extraction

Examples

- Graphene Antenna
- MoS2 FET
- Schrödinger Poisson eqs.: CNT FET
- Dirac Maxwell eqs.: Ballistic Ratchet effect on graphene

Bridging from atomistic to continuum level

Interfacing mathematical models (PDEs)

Interfacing Physics --- > PDEs equations Systems

GreEnergy Summer School 2022

Electrodynamics and Quantum Transport : combining Maxwell < --- > Schrödinger/Dirac

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t)$$
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t) + \mathbf{J}(\mathbf{r}, t)$$
Electromagnetic: Maxwell

$$H(\mathbf{r},t)\mathbf{\psi}(\mathbf{r},t) = i\hbar \frac{\partial \mathbf{\psi}(\mathbf{r},t)}{\partial t}$$

Quantum: Schrödinger/Dirac

- interaction particles-EM field transient
- Quantum dots, quantum wells
- Ballistic electronics
- non-linear devices
- Spintronics
- photodetectors

...

CNT

Home-made Software

Quantum-EM: Dirac Equation in the presence of an EM field

GreEnergy Summer School 2022

Dirac Equation – Maxwell Equations Graphene devices: ballistic transport, effective mass

modeling of discontinuities – absorbing boundary conditions

$$i\hbar \frac{\partial \psi^+}{\partial t} = \mathbf{\sigma}_{xy} \cdot \left(\hat{\mathbf{p}}_{xy} - q\mathbf{A}\right) v_F \psi^- + M(\mathbf{r}) v_F^2 \sigma_z \psi^+ \Box \mathbf{A}$$

the mass term M may models discontinuities

$$i\hbar \frac{\partial \psi^{-}}{\partial t} = \mathbf{\sigma}_{xy} \cdot \left(\hat{\mathbf{p}}_{xy} - q\mathbf{A}\right) v_{F} \psi^{+} + M\left(\mathbf{r}\right) v_{F}^{2} \sigma_{z} \psi^{-}$$

$$\boldsymbol{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \hat{x} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \hat{y} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \hat{z} = \boldsymbol{\sigma}_{xy} + \boldsymbol{\sigma}_{z} \hat{z}$$
$$\hat{\mathbf{p}} = -i\mathbf{h}\nabla = \hat{\mathbf{p}}_{xy} + p_{z} \hat{z}$$
$$\mathbf{J} = v_{F} \boldsymbol{\psi} * \hat{\sigma} \boldsymbol{\psi}$$
$$\hat{\sigma} = \begin{bmatrix} \sigma_{x}, \sigma_{y} \end{bmatrix}$$

obstacles/discontinuities can be analyzed by means of the effective mass concept

Example: Dirac + Maxwell in

Ballistic Ratchet effect in antidot patterned on graphene

... a collective motion of particles in a preferential direction, due to spatially-asymmetric perturbations

... under microwave linear polarized radiation, the effect was observed in a high mobility two-dimensional electron gas based on AlGaAs/GaAs heterojunction, with periodic array of artificial semi-discs shaped obstacles

GOAL: graphene in place of semiconductor

(*) D. Medhat, A. Takacs, H. Aubert, J. C. Portal, **Comparative Analysis of Different Techniques for Controlling Ratchet Effect in a Periodic Array of Asymmetric Antidots**, <u>Micr.Conference</u>, (2009). <u>APMC</u> <u>2009. Asia Pacific</u>

S. Bellucci, L. Pierantoni, D. Mencarelli, **"Ballistic Ratchet effect on patterned graphene"**, Journal of Integrated Ferroelectrics, Vol. 176, Issue 1, pp. 28-36, Dec. **2016**, DOI: <u>http://dx.doi.org/10.1080/10584587.2016.1185883</u>

Transport: Ballistic vs Diffusive

Ballistic Transport = Electrons travel without scattering from injected contact to absorbing contacts

weak recombination with phonons

NON-BALLISTIC (DIFFUSIVE) TRANSPORT

Diffusive Transport = Electrons undergo a **random walk** as they go from left to right contact

- the average distance between collisions is called the mean free path (λ)
- The diffusive transit time will be much longer than the ballistic transit time

GreEnergy Summer School 2022

scattering/diffraction by obstacles

GreEnergy Summer School 2022

A plane wave couples with a graphene charge wavepacket

$$E_{ext} = E_0 \cos(\omega_0 t)$$

- a uniform external time-dependent plane wave is impinging on the graphene
- EM plane wave spectrum up to THz

- a charge wavepacket is set on graphene
- corresponding Energy: up to 0.5 eV
- Q(t=0) corresponds to $n_s(t_0) = 10^{11} cm^{-2}$

GreEnergy Summer School 2022

charge diffraction by **ELLIPTIC** obstacles

Software: originanally written in Fortran

Normalized potentilas difference between probes

GreEnergy Summer School 2022

- coupling bewteen EM propagation and charge transport
- charge diffraction by obstacles

from an electrode

ଞ୍ଚିଷ୍ଣ

time [fs]

GreEnergy Sum

30Ò

200

100

2

200

Normalized potentilas difference between probes

charge diffraction by **TRIANGULAR** obstacles

GreEnergy Summer School 2022

Application of the models/tools in the area of smart material-based Photonics

graphene optical modulator

graphene infrared detector

CNT photodetector

D. Mencarelli, L. Pierantoni, T. Rozzi, "Optical Absorption of Carbon Nanotube Diodes: Strength of the Electronic Transitions and Sensitivity to the Electric Field Polarization", Journal of Applied Physics, vol. 103, Issue 6, pp.0631-03, March 2008, DOI: <u>10.1063/1.2890392</u>

THANK YOU !!!

GreEnergy Summer School 2022

Back up slides

Platinum diselenide (PtSe₂)-based devices

- Graphene has high mobility but little bandgap
- MoS₂ has sizable bandgap but low mobility
- Black phosphorus has high mobility and sizable bandgap, but is unstable
- PtSe2 has high mobility, sizable bandgap
- **CMOS compatible** with typical thin-film transistor processes
- □ is semimetallic, with low-resistance contacts-a challenge

Platinum diselenide is a transition metal dichalcogenide with a layered structure. It has an Hexagonal unit cell with a = b = 0.375 nm, c = 0.506 nm and $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$.

STEP I: ATOMISTIC SIMULATIONS

ATOMISTIC LEVEL

GreEnergy Summer School 2022

bulk material

Band-structure vs. number of layers

[1]: High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs, Zhao et. al., Adv. Mater. 2017, 29, 1604230

Band-structure vs. data in literature/experimental results

[1]: Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe₂ film, W. Yao, *Nature Communications*. 2017, 8, 14216
[2]: Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalogenide, Epitaxially Grown by Direct Selenization of Pt, Y. Wang, *Nano Lett.*, 2015, 15, 4013-4018
[3]: High-Electron-Mobility and Air-Stable 2D Layered PtSe₂ FETs, Zhao et. al., *Adv. Mater*. 2017, 29, 1604230

STEP II: obtaining the constitutive relations

Relative Permittivity $\varepsilon_r(\omega)$

GreEnergy Summer School 2022

PtSe₂: from monolayer to bulk to metal-contact

STEP III: inserting the constitutive relations into the full-wave EM simulations

 \Box NOTE: for the modeling of realistic PtSe₂ FET we are trying:

- A total **ATOMISTIC** simulation (but with a limit of 5k atoms-domain)
- A full-wave **EM** simulation (extreme scale contrast)
- An interfaced **ATOMISTIC-EM** model/simulation

0.4

0.2

0.6

Normalized width (a u)

0.8

1.0

Results are in the context of a International Project

Vds (V)

a Pierantoni

CNT DESIGN TOOLS II

GRAPHENE DEVICES DESIGN TOOLS III

GreEnergy Summer School 2022
scattering/diffraction by obstacles

GreEnergy Summer School 2022

ca Pierantoni

Physical Properties

Computational Parameters

GreEnergy Sum

Pierantoni

Propagation of a Gaussian pulse for wide-band electron energy

Propagation of $|J_z|$

Propagation of $|J_x|$

GreEnergy Summer Schoo

Luca Pierantoni

Transmittivity of a Graphene Channel

GreEnergy Summer Sc

Luca Pierantoni

self-generated EM field in the presence of a potential barrier

GreEnergy Sum

Pierantoni

CNT wavepacket dynamics with or without the self-generated EM field

GreEnergy Summer Sc

Luca Pierantoni