

M. Midrio, D. Truccolo Università degli Studi di Udine

Efficient antennas and rectifying ballistic diodes for harvesting of solar energy

M. Midrio, D. Truccolo Università degli Studi di Udine

- Some common (mis)concepts on optical antennas and antenna efficiency measurements
- The design of an antenna array with high efficiency
- The ballistic diode

"The beauty of optical antennas is the strong field enhancement between the terminals"

- Can antennas providing large field enhancement really be used for energy harvesting?
- Is field enhancement so important for energy harvesting?

Roberto Fernández-García et al., Design considerations for near-field enhancement in optical antennas, **Contemporary Physics**, vol. 55, 2014, issue 1

"The beauty of optical antennas is the strong field enhancement between the terminals"

- Can antennas providing large field enhancement really be used for energy harvesting?
- Is field enhancement so important for energy harvesting?

Usually, enhancement is intrinsically related to some resonance ... and therefore is a NARROWBAND process ... are we sure we're doing the right thing for harvesting of sunlight?

"The beauty of optical antennas is the strong field enhancement between the terminals"

- Can antennas providing large field enhancement really be used for energy harvesting?
- Is field enhancement so important for energy harvesting?

The GreEnergy approach

- 1. The role of our antennas is that of converting sunlight into DC current/voltage through a diode. Therefore
 - a. The key-performance-indicator is not the field enhancement; rather, we look for the ability to deliver power to the load (diode);
 - b. antennas must be broadband, dual-pol and "insensitive" to the angle of arrival of sunlight;
- 2. We need to exploit the physical space as well as we can. We do not design a single antenna and hope for a stroke of luck when we pack antennas: we start from the design of a lattice of antennas.

Measurement of antenna efficiency State of the art prior to GreEnergy Project

How does one measure the efficiency of an antenna?

- Transmitting vs receiving efficiency
- A real flaw: greater than 50% efficiency with no reflecting ground???

Measurement of antenna efficiency State of the art prior to GreEnergy Project

The definition of antenna efficiency

 $\eta_{A}(\lambda) = \begin{cases} \frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} & \text{``Transmitting efficiency''} \\ \frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} & \text{``Receiving efficiency''} \end{cases}$

Nano Energy (2012) 1, 494-502

RAPID COMMUNICATION

Upper bounds for the solar energy harvesting efficiency of nano-antennas

Guy A.E. Vandenbosch*, Zhongkun Ma

"Record" efficiency equal to 59.6%

Measurement of antenna efficiency State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

Problem #1. Source impedance (or load) has no role?

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

$$\eta_{A}(\lambda) = \begin{cases} \frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} \\ \frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} \end{cases}$$

Problem #1. Source impedance (or load) has no role?

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

$$\eta_{A}(\lambda) = \begin{cases} \frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} \\ \frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} \end{cases}$$

Problem #1. Source impedance (or load) has no role?

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

$$\eta_{A}(\lambda) = \begin{cases} \frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} \\ \frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} \end{cases}$$

Problem #2. Larger than 50% efficiency with a dipole in free space????

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

$$\eta_{A}(\lambda) = \begin{cases} \frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} \\ \frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} \end{cases}$$

The receiving area of an array of antennas with no ground-plane is, at most, half its physical size [J. Kraus, *Antennas* (New York: McGraw-Hill, 1950)]. Read as: such an antenna can receive 50% of the incoming power at best.

Let us see the practical implications of this property and the difference between transmitting and receiving efficiency.

Suppose an ideally lossless antennas fed by a perfectly matched source is considered.

Transmitting efficiency $\frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} = 100\%$

Receiving efficiency

$$\frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} = 50\%$$

Problem #2. Larger than 50% efficiency with a dipole in free space????

Where is the missing 50%?

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

$$\eta_{A}(\lambda) = \begin{cases} \frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} \\ \frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} \end{cases}$$

The receiving area of an array of antennas with no ground-plane is, at most, half its physical size [J. Kraus, *Antennas* (New York: McGraw-Hill, 1950)]. Read as: such an antenna can receive 50% of the incoming power at best.

Let us see the practical implications of this property and the difference between transmitting and receiving efficiency.

Suppose an ideally lossless antennas fed by a perfectly matched source is considered.

Transmitting efficiency $\frac{P_{RAD}(\lambda)}{P_{RAD}(\lambda) + P_{LOSS}(\lambda)} = 100\%$

Receiving efficiency

 $\frac{P_{LOAD}(\lambda)}{P_{INCIDENT}(\lambda)} = 50\%$

Problem #2. Larger than 50% efficiency with a dipole in free space????

Where is the missing 50%? LOST TO SCATTERING

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

The receiving area of an array of antennas and matched loads can equal its physical size only in the presence of a groundplane [S. A. Schelkunoff and H. T. Friis, Antenna Theory and Practice (John Wiley and Sons, 1952)]

Problem #2. Larger than 50% efficiency with a dipole in free space???? By NO MEANS can an antenna like this (that is: with no ground plane) have a "real" (receiving) efficiency larger than 50%.

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Transmitting vs receiving efficiency

 $P_{RAD}(\Lambda)$

The receiving area of an array of antennas and matched loads can equal its physical size only in the presence of a groundplane [S. A. Schelkunoff and H. T. Friis, Antenna Theory and Practice (John Wiley and Sons, 1952)]

Problem #2. Larger than 50% efficiency with a dipole in free space???? By NO MEANS can an antenna like this (that is: with no ground plane) have a "real" (receiving) efficiency larger than 50%.

Guidelines in GreEnergy approach

Maximization of (receiving) efficiency

1. Antennas need to have a backreflector

Broadband behaviour

US Patent US3789404A, B. A. Munk, "Periodic surface for large scan angles":

- 1. In order for any periodic surface to have a stable resonant frequency with angle of incidence, the interelement spacings must be small (< 0.4λ)
- 2. Adding dielectric slabs on the outside of all narrow-band devices can reduce the typical bandwidth variation from as much as 6.5: 1 to less than 1.5:1 (for angle of incidence up to 70°, any polarization)
 - A completely general rule can not be found, but typical values of slab dielectric constant ε should be < 1.6 and with a thickness of about 0.25λ

Dual polarization

1. A bit of physical intuition and fantasy

- Small interelement spacing (140 nm pitch)
- Backreflector!
- Extremely careful optimization of dimensions, thicknesses, choice of materials

Broadband behaviour

US Patent US3789404A, B. A. Munk, "Periodic surface for large scan angles":

1. In order for any periodic surface to have a stable resonant frequency with angle of incidence, the interelement spacings must be small (< 0.4λ)

World record, 71.2% receiving efficiency

Decently stable vs. angle of arrival

M. Midrio, D. Truccolo Università degli Studi di Udine

- Some common (mis)concepts on optical antennas and antenna efficiency measurements
- The design of an antenna array with high efficiency
- The ballistic diode

Introduction: Graphene ballistic rectifier

- Graphene structures cross-shaped with a triangle etched at the center
- An AC signal between S and D induces a voltage V_{LU} having a non null DC component
 → rectification
- For simply geometrical reasons electrons injected at S and D move easier to the L compared to the U terminal

 Rectification is thus a non-linear effect arising from geometrical features and it is favoured by ballistic transport conditions [1]

[1] Song, A. M. (1999). Formalism of nonlinear transport in mesoscopic conductors. Physical review B, 59(15), 9806. UNIVPM. Ancona

Why graphene?

- Graphene has high mobility at room temperature no low T operation needed GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -

UNIVPM. Ancona

Introduction: objectives of Simulations

- Find optimum geometry for the ballistic rectifier
- Estimate electrical parameters (output voltage, input resistance, responsivity)
- > Study device behavior on suspended graphene (ballistic regime)
- Study device behavior on SiO₂ substrate (intrinsic phonons, remote phonons, edge defects)

Model: Landauer-Buttiker

Synergistic use of Monte Carlo Simulation and Landauer-Buttiker formalism [2]

Imposing $I_L = I_U = 0$ we find

$$V_{LU} = \frac{G_{LS}(V_{SD})G_{UD}(V_{SD}) - G_{LD}(V_{SD})G_{US}(V_{SD})}{G_{L}S - (G_{SL}(V_{SD}) + G_{DL}(V_{SD}))(G_{LD}(V_{SD}) + G_{LS}(V_{SD}))}V_{SD}$$

= $\frac{A(V_{SD})}{B(V_{SD})}V_{SD}$

$$G_{ij}(V_{SD}) = \frac{2q^2Wk_bT}{\pi^2\nu_f\hbar^2}T_{ij}(V_{SD})\log(1+e^{E_f/k_bT})$$

 T_{ij} is the transmission probability $0 \le T_{ij} \le 1$ where *j* is the injection and *i* the collection terminal

[2] Büttiker, M. (1986). Four-terminal phase-coherent conductance. Physical review letters,
 57(14), 1761. GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -

Model: Landauer-Buttiker

In order to consider both electrons and holes transport

$$G_{ij}(n, V_{SD}) = G_{ij}^{e}(n, V_{SD}) + G_{ij}^{h}(p, V_{SD})$$

where $G_{ij}^{h}(p, V_{SD}) = G_{ij}^{e}(n_i^2/n, -V_{SD})$ with n_i intrinsic carrier density

Evaluations performed considering V_{SD} as DC Voltage

Model: Monte Carlo simulation

Model: T_{ij} calculation

Model: Symmetry

S and D terminals are totally equivalent and only V_{SD} distinguishes the corresponding probabilities so we have

$$\begin{cases} T_{LS}(V_{SD}) = T_{LD}(V_{DS}) \\ T_{US}(V_{SD}) = T_{UD}(V_{DS}) \\ T_{DS}(V_{SD}) = T_{SD}(V_{DS}) \end{cases}$$

The remaining T_{ij} with $j \neq \{S, D\}$ are assumed to fulfill the equilibrium condition

$$T_{ij}=T_{ji}$$

also when V_{DS} is not zero. This approximation is valid for $I_L = I_U = 0$ [1]

[1] Song, A. M. (1999). Formalism of nonlinear transport in mesoscopic conductors. Physical review B, 59(15), 9806.

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -

UNIVPM, Ancona

Result: T_{ij} comparison at E=0

- Comparison between T_{ij} calculated with MC (sim) and analytical relation (th)
- T_{ij} th : analytical expression can be obtained under ballistic transport and $V_{SD} = 0$
- Perfect agreement between results

Result: T_{ij} vs V_{SD}

- If $V_{SD} \neq 0$ no simple analytical relation can be derived
- MC simulations provide T_{ij} also for arbitrary transport conditions

Result: V_{LU} vs V_{SD}

• We observe a quadratic relationship 0 between input and output voltage -0.05 $V_{LII} \approx \alpha V_{SD}^2$ -0.1 V_{LU} [mV] $V_{LII} \rightarrow 0$ • $L_2 \rightarrow \infty$ -0.15 L2=165nm W=100nm L2=180nm L=100nm L2=255nm -0.2 n=3 10¹¹cm⁻² L2=450nm L1=150nm L2=1000nm .25 L2=5000nm U – – fit α V²_{SD} -0.3 -20 -10 20 10 0 D V_{SD} [mV] We find a maximum of V_{LU} for $L_2 \approx 180 nm$ L1 W L2 GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -

UNIVPM, Ancona

Result: $r vs L_2$

- We define responsivity $r = \frac{V_{LU}}{P_{in}} = \frac{\alpha V_{SD}^2 / 2}{V_{SD}^2 / (2R_{SD})} = \alpha R_{SD}$
- We find a maximum responsivity at $L_2 \approx 180 nm$

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -

UNIVPM, Ancona

Result: *r* vs n

• Maximum responsivity at $n \approx 3 \ 10^{11} cm^{-2}$

- High responsivity value also in scattering conditions
- Minimum responsivity at $n \approx 10^{11} cm^{-2}$ corresponding to Dirac point where p = n

Result: R_{SD} vs n

increases

Result: r vs W

- Responsivity increases for W up to 700nm
- R_{SD} decreases with W

UNIVPM, Ancona

Conclusion

Simulations have shown high responsivity values for:

- $n \approx 3 \ 10^{11} \ cm^{-2}$
- $L_1 = 150 \ nm$ $L_2 = 180 \ nm$
- $W = 700 \, nm$
- Strong impact of remote phonons on responsivity

Future goals: full structure simulation coupled with electrostatic

- Device frequency dependence
- Dependence on external loads ($I_L \neq 0$ and $I_U \neq 0$)
- Comparison with previous results

Thank you for your attention

More information is available at www.greenergy-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006963 (GreEnergy).

