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Some common (mis)concepts on optical antennas

“The beauty of optical antennas is the

strong field enhancement between the terminals”

* Can antennas providing large field enhancement really be used for energy harvesting?

* |s field enhancement so important for energy harvesting?
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Some common (mis)concepts on optical antennas

“The beauty of optical antennas is the
strong field enhancement between the terminals”

e Can antennas providing large field enhancement really be used for energy harvesting?
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Usually, enhancement is intrinsically related to some resonance ... and therefore is a NARROWBAND process
... are we sure we’re doing the right thing for harvesting of sunlight?



Some common (mis)concepts on optical antennas

“The beauty of optical antennas is the
strong field enhancement between the terminals”

* Can antennas providing large field enhancement really be used for energy harvesting?
* Is field enhancement so important for energy harvesting?
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The GreEnergy approach

1. The role of our antennas is that of converting sunlight into DC current/voltage

2.

through a diode. Therefore

a. The key-performance-indicator is not the field enhancement; rather, we look for
the ability to deliver power to the load (diode);

b. antennas must be broadband, dual-pol and “insensitive” to the angle of arrival of
sunlight;

We need to exploit the physical space as well as we can. We do not design a single
antenna and hope for a stroke of luck when we pack antennas: we start from the
design of a lattice of antennas.



Some more (mis)concepts on optical antennas

Measurement of antenna efficiency
State of the art prior to GreEnergy Project

How does one measure the efficiency of an antenna?
* Transmitting vs receiving efficiency

* Areal flaw: greater than 50% efficiency
with no reflecting ground???



Some more (mis)concepts on optical antennas

Measurement of antenna efficiency
State of the art prior to GreEnergy Project

The definition of antenna efficiency

Prap() “Transmitting efficiency”
14 (1)= Prap(A)+PLoss(4)
J P(ns(D)dA PLoap4) ”Receiving efficiency”
o PincipeENT(4)

Nror = v N
GOz
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Some more (mis)concepts on optical antennas

Measurement of antenna efficiency
State of the art prior to GreEnergy Project

Transmitting vs receiving
efficiency

( Prap(4)

_ ) Prap(AD)+PLoss(A)
Na(4)= Proap(4)
\ PincipEnT(A)

v

Problem #1. Source impedance
(or load) has no role?




Some more (mis)concepts on optical antennas

Measurement of antenna efficiency - State of the art prior to GreEnergy Project
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Measurement of antenna efficiency - State of the art prior to GreEnergy Project
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Some more (mis)concepts on optical antennas

Measurement of antenna efficiency - State of the art prior to GreEnergy Project
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Problem #2. Larger than 50% efficiency
with a dipole in free space????
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Some more (mis)concepts on optical antennas

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Tra nsmitting VS receiving The receivi.ng area-of an- array of antennas with no ground-plane is, .at
.. most, half its physical size [J. Kraus, Antennas (New York: McGraw-Hill,
eff|C|ency 1950)]. Read as: such an antenna can receive 50% of the incoming
power at best.
( Prap(1)
Let us see the practical implications of this property and the difference
P A)+P A
Ny (A): { rap(A) LOSS( ) between transmitting and receiving efficiency.
Proap(A)
\ Pincipent(A) Suppose an ideally lossless antennas fed by a perfectly matched source
is considered.
Transmitting efficiency
P A
P () + " @ O
ﬂ. ? ? RAD LOSS
' i Receiving efficiency
4
N2
Proap(2)
= 50%
Pincipent (D)

Problem #2. Larger than 50% efficiency , . . missing 50
with a dipole in free space????

%?



Some more (mis)concepts on optical antennas

Measurement of antenna efficiency - State of the art prior to GreEnergy Project

Tra nsmitting VS receiving The receivi.ng area-of an- array of antennas with no ground-plane is, .at
.. most, half its physical size [J. Kraus, Antennas (New York: McGraw-Hill,
eff|C|ency 1950)]. Read as: such an antenna can receive 50% of the incoming
power at best.
( Prap(1)
Let us see the practical implications of this property and the difference
P A)+P A
Ny (A): { rap(A) LOSS( ) between transmitting and receiving efficiency.
Proap(A)
\ Pincipent(A) Suppose an ideally lossless antennas fed by a perfectly matched source
is considered.
Transmitting efficiency
P A
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' i Receiving efficiency
4
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Problem #2. Larger than 50% efficiency , . . missing 50
with a dipole in free space????
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Some more (mis)concepts on optical antennas
Measurement of antenna efficiency - State of the art prior to GreEnergy Project

The receiving area of an array of antennas and matched loads

Transmitting vs receiving
can equal its physical size only in the presence of a ground-

eff|C|ency plane [S. A. Schelkunoff and H. T. Friis, Antenna Theory and
Practice (John Wiley and Sons, 1952
( Prap(A) ( y l
na(1)= Prap(A)+Pross(A) 00
A PrLoap(4) n?>
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. . By NO MEANS can an antenna like this (that is: with
V)
Problem #2. Larger than 50% efficiency no ground plane) have a “real” (receiving) efficiency

with a dipole in free space???? larger than 50%.



Some more (mis)concepts on optical antennas
Measurement of antenna efficiency - State of the art prior to GreEnergy Project

The receiving area of an array of antennas and matched loads
.« can equal its physical size only in the presence of a ground-
eff|C|ency plane [S. A. Schelkunoff and H. T. Friis, Antenna Theory and
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Guidelines in GreEnergy approach

Maximization of (receiving) efficiency
1. Antennas need to have a backreflector

Broadband behaviour
US Patent US3789404A, B. A. Munk, “Periodic surface for large scan angles”:

1. In order for any periodic surface to have a stable resonant frequency with angle of incidence, the
interelement spacings must be small (< 0.41)

2. Adding dielectric slabs on the outside of all narrow-band devices can reduce the typical bandwidth
variation from as much as 6.5: 1 to less than 1.5:1 (for angle of incidence up to 70°, any polarization)

* A completely general rule can not be found, but typical values of slab dielectric constant € should
be < 1.6 and with a thickness of about 0.25A

Dual polarization
1. A bit of physical intuition and fantasy
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The GreEnergy proposed solution

Broadband behaviour

US Patent US3789404A, B. A. Munk, “Periodic surface for large scan angles”:

1.

In order for any periodic surface to have a stable resonant frequency with angle of incidence, the
interelement spacings must be small (< 0.41)
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Power to the load efficiency
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Antenna size (nm)
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Introduction: Graphene ballistic rectifier
Graphene structures cross-shaped with a
triangle etched at the center /\/
An AC signal between S and D induces a \ //\
voltage V; y having a non null DC component \
=» rectification

For simply geometrical reasons electrons
injected at S and D move easier to the L
compared to the U terminal

e Rectification is thus a non-linear effect arising from geometrical features and it is favoured
by ballistic transport conditions [1]

[1] Song, A. M. (1999). Formalism of nonlinear trapspRFs,ifm& IR EARIG RIS Bhysisal. review B, 59(15), 9806.

UNIVPM, Ancona
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Introduction: Graphene ballistic rectifier

No built-in potential

No threshold voltage No parasitic capacitance
small signal rectification High frequencies rectification

d

Energy harvesting applications

Why graphene?
» Need ballistic transport = high mobility and electron mean-free-path
» Graphene has high mobility at room temperature = no low T operation needed

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 - 25
UNIVPM, Ancona



Introduction: objectives of SIMU lations

» Find optimum geometry for the ballistic rectifier

» Estimate electrical parameters (output voltage, input resistance,
responsivity)

» Study device behavior on suspended graphene (ballistic regime)

» Study device behavior on Si0O, substrate (intrinsic phonons, remote
phonons, edge defects)

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -
UNIVPM, Ancona
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Model: Landauer-Buttiker

Synergistic use of Monte Carlo Simulation and Landauer-Buttiker formalism [2]
Imposing I; = I; =0 we find

Grs(Vsp)Gyp(Vsp) — Grp(Vsp)Gys(Vsp)

V
GLS — (Gsy(Vsp) + Gpr(Vsp) ) (Grp(Vsp) + Grs(Vsp)) P
_ A(Vsp)
T BWsp) P

Vig =

2q°Wk,T
m2v¢h?

Gij(Vsp) = T;;(Vsp)log(1 + efr/keT)

T;j is the transmission probability 0 < T;; < 1
where j is the injection and i the collection terminal

T's

[2] Blttiker, M. (1986). Four-terminal phase-coherent conductance. Physical review letters,

57(14); 1761. GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -
UNIVPM, Ancona
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Model: Landauer-Buttiker

In order to consider both electrons and holes transport

Gij(n,Vsp) = Gije(n; Vsp) + Gijh(p; Vsp)

where Gijh(p, Vep) = Gije(niz/n, —Vsp) with n; intrinsic carrier
density

Evaluations performed considering V¢, as DC Voltage

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 - )8
UNIVPM, Ancona



T;; are calculated with

MC technique [3]:

Model: Monte Carlo simulation

MC simulator

* Sequence of electron free-flights (FF)
* During FF electric field changes electron wave vector e === = o

I
* FF time is determined by scattering condition - :
|
|

Thanks to symmetry
conditions we can
restrict simulations
to a sub-region of the
overall device

[3] Bresciani M. et al. Solid-state electronics 89 (2013): 161—166| -

-~

——

GreEnergy Consc

UNIVPM, Ancona
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Model: T;; calculation

e Particles injected randomly from S terminal U
n particle pass through L4
* Reflections: Tys = — :
n injected particles
» Specularly

» Random reflection
(simulating edge defects)

n particle come back S

Tec =
53 n injected particles

n particle pass through L,

TLS — . ;
n injected particles

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 - ISD
UNIVPM, Ancona



Model: Symmetry

S and D terminals are totally equivalent and only Vsp distinguishes the corresponding
probabilities so we have

(TLS(VSD) =T1p(Vps)
Tys(Vsp) = Typ(Vps)
\TDS(VSD) = Tsp(Vps)

A

The remaining T;; with j # {S, D} are assumed to fulfill the equilibrium condition
Tij — T]l

also when Vpg is not zero. This approximation is valid for I;, = I; = 0 [1]

[1] Song, A. M. (1999). Formalism of nonlinear transport in mesoscopic conductors. Physical review B, 59(15), 9806.

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -
UNIVPM, Ancona
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* Comparison between T;; calculated with MC 0.7 |
. . . o—0 L~ © L~
(sim) and analytical relation (th) 5,08 Tooh o T sm| -
% 0.5 _TLSth o TLS sim
. . . o V. .
* T;j th:analytical expression can be obtained ke ——Tggth & Tggsim
_ S 0.4
under ballistic transport and Vsp = 0 c / —— = ,
2 '
- W=100
» Perfect agreement between results , L 100mm
S L1=150nm
. n=3 10"em™
)
O o © : >
s 100 200 \ 300 400 500 600
-7 s : D L. [nm]
P I 1 2
Pt | I— \/ Tys = Tis , S
oloeoooooooos , when L, - L, Tss = 0 in ballistic regime if
: L1\ )L W 2
I W 7
l 12 : / LZ > L]_ 1+ (_)
' l ,/ GreEnergy Consortium Meeting CM4 - 30&31 May 2022 - Ll 32
' I/ UNIVPM, Ancona

Result: T;; comparison at E=0




* If Vsp # 0 no simple analytical relation 0.8~

can be derived

* MC simulations provide T;; also for
arbitrary transport conditions

U
PR I \/ D
e e __ //
1 /
. Lo\
I W | 7
I /
I L2 Iy
| :

Result: Tl] VS VSD

©
o)}

Transmission probability

»

W=100nm
L=100nm

n=1011cm

-2

“‘\c,‘“

If Vsp > 0 Tgg can be non null evenif L, >

GreEnergy Consortium Mex;.ltin CM4 - 30£1}
UNIVPM, Ancona
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Result: VLU VS VSD

* We observe a quadratic relationship 0 — — :
between input and output voltage \\\
~ 2 /
Vig= aVsp \\
@ LZ — OO VLU - 0
——|2=165nm |
———12=180nm | W=100nm
e L2=255nm L=100nm
——12=450nm | n=310"cm?
== 12=1000nm L1=150nm
e | 2=5000nm
U \ 2
- - =fita V2,
/,/S\/ D -10 0 10 20
= ' . . Vg, [mV]
e e ) We find a maximum of sb
_____________ ,
i . o\ Viy forl, = 180nm
: 2\l
l GreEnergy Consortium Meeting CM4 - 30&31 May 2022 - 34
: L 1 UNIVPM, Ancona



Result: 7 vs L,

6500 — 2500
 We define responsivity
) Rl S D SR S
Viy aVep© /2 om0 %2000
Y = — = = aR 6000 1 —e—R ., bal
P: 2 2 SD SD g
l VSD /( RSD) - ‘-RSD ph Z‘
— . 11500
= responsivity bal =
: : . = -9~ ivity ph =
e We find a maximum responsivity at mc% 5500 roSponsivity p %
. W=100nm 11000 ©
LZ ~ 180nm L=100nm ?
1.2 o
5000 { n=310""cm
U & L1=150nm 1500
R i D 4500 - ~ - - 0
.- | 100 200 300 400 500 600
P A )/ L2[nm]
: L1\ /L S
"l | /,' Responsivity is evaluated for Vop — 0
[
' L2 : ,/ GreEnergy Consortium Meeting CM4 - 30&31 May 2022 - 35
: 1 ! UNIVPM, Ancona



6000 ¢
\\o
. . . . o
* High responsivity value also in scattering _ 5000 \.-:\
conditions §4ooo- X
= “
. . _ = 3000 |
e Minimum responsivity atn = 10 cm ™2 2
. . . @)
corresponding to Dirac point where p =n & 2000 |
5 1000 ~ 9,
—
] X 0
SRS \/ D
ol = |/
[
. .
I 7
I by .
: L2 : ! GreEnergy Consortitrnweléeré)tggr}%!l\—lgg%l May 2022 -
|

* Maximum responsivity at n =~ 3 101 cm =2

Result: r vs n

. - © -Bal.
’ s = B =int.
g A € =int+rem
P - # =int+rem+diff 50°
- Y \2 int+rem+diff 50%
v .
" b‘“\ W=400nm
N N L=100nm
v 5y L1=150nm
I \‘\ L2=180nm
n A \
u AR
{ I W
v \\O.
R S s

Strong impact of remote phonons on

UNIVPM, Ancona
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Result: Rgp vs n

e Maximum Rgp at Dirac pointn =~ 10 tecm™2 3500 e
- = pal.
= B =int.
3000 | M..Q o
. ¢ - @ =int+rem
* Rgp degrades when the Fermi level enters the ool Al TN - « ~int+remdiff 50%
conduction band and the electron concentratio A \'*
. —_ ‘/ \\\\ W=400nm
increases S, 2000 e L=100nm
e - L1=150nm
o 1500 | N L2=180nm
>
1000 | e
U 500 \“"’\‘ y
-5
0 1
e 102 1013
-7 | S : D 2
e | n[cm™]
P /
,"“"“““u“'l ,'L n > 101%em=2
| .
| |w : // Same behavior regardless transport
: L2 : ,/ GreEnergy Consortium Meé}@@dét&i@n&lay 2022 -
|

/ UNIVPM, Ancona



Rsp decreases with W

Result: r vs W

Responsivity increases for W up to 700nm Q

7000 1600
0000+ "o L g - 1400
\ @
\
5000 \ e Ry, §
I~ k - .| 11200 =
= \ ’ - B -responsivity =
0 4000 | ' %
o ., L=100nm .
A L1=150nm 11000 Q
3000 L2=180nm 2
! .
' - - n=310"" cm™
2000. ’l ~°-.°__._.°--°800
'l
1000 B : : : 600
0 200 400 600 800 1000
W[nm]

Simulation with Intrinsic and remote

honons activated

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -
UNIVPM, Ancona
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Conclusion

» Simulations have shown high responsivity values for:
c n=310" eom™?
e L; =150nm L, =180nm
e W =700nm

» Strong impact of remote phonons on responsivity

» Future goals: full structure simulation coupled with electrostatic
* Device frequency dependence
* Dependence on external loads (I; # 0 and I; #0)
 Comparison with previous results

GreEnergy Consortium Meeting CM4 - 30&31 May 2022 -
UNIVPM, Ancona
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