# Quantum transport in asymmetric graphene structures Davide Mencarelli, Luca Pierantoni

## UNIVPM Università Politecnica delle Marche







## High frequency rectification





The modelling of coherent charge transport is carried out by Scattering Matrix (SM) formulation, under the following assumptions:

Iow metal-contact resistance

ballistic transport



For the 2 port device the numerical simulation provides the dependence of the I-V curve on:

- the angle of the graphene taper
- the neck size

The final goal of the modelling is to find an optimum configuration of the above parameters, in terms of:

- asymmetry of the current voltage characteristic
- diode resistance
- reverse-bias leackage current



GreEnerg



#### SM calculation example [20 x 20 nm<sup>2</sup> diode, 4 nm neck, 1.5 V]



0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0

GreEner







#### First GreEnergy workshop - 16 October 2023

#### 50 ×10<sup>-4</sup> *Effect of the neck width* 1.2 40 Asym (a.u.) 05 05 0.8 0.5 Voltage (V)1 Increasing neck 0.4 $\approx 15 \text{ nm}$ D aperture $\approx 15 \text{ nm}$ L $\approx 8 \text{ nm}$ w 0 Θ 60° $\approx 15 \text{ nm}$ D $\approx 15 \text{ nm}$ L -0.4 $\approx 4 \text{ nm}$ w Θ 60° -0.8 -1.5 -1 -0.5 0.5 1.5 0 Voltage (V)

First GreEnergy workshop - 16 October 2023

1.5

#### Effect of the **neck size**



To isolate the neck effect transparent metal contacts are assumed

Decreasing the neck size: a. the I-V asymmetry increases b. the amount of current reduces (diode impedance increases) c. the reverse-bias current reduces

GIELIICIYY

#### Effect of the **neck angle**





Large diodes, 23x30 nm<sup>2</sup>: two different neck angles are considered for comparison,  $60^{\circ}$  and  $40.9^{\circ}$ 





An interesting case: 3 port device (Y junction)





First GreEnergy workshop - 16 October 2023

GreEnergy

### 4 port BALLISTIC RECTIFIER

Electronic transport through **Montecarlo** simulations (UNIUD, in progress)





First GreEnergy workshop - 16 October 2023

## Encouraging experimental results



W=400nm, L=300nm







First GreEnergy workshop - 16 October 2023

### Monte Carlo results (by UNIUD)







Dependence of input resistance RSD and responsivity on L2. Responsivity is evaluated considering VSD near 0 V. **RSD bal** and **responsivity bal** are calculated under ballistic transport while **RSD ph** and **responsivity ph** with intrinsic and remote phonon activated. Responsivity vs electron density. Responsivity is evaluate considering VSD near 0 V. **Black line** consider full ballistic transport. **Green line**: transport with intrinsic phonons. **Red line**: transport with intrisic + remote phonons. **Purple line**: transport with intrinsic + remote phonons + 50% of random reflecting angles.

n[cm<sup>-2</sup>]

10<sup>12</sup>

11

 $10^{11}$ 

- 😑 – Bal.

- - int.

♦ – int+rem

int+rem+diff 50%

W=400nm

L=100nm

L1=150nm

L2=180nm

 $10^{13}$ 

6000

5000

4000 3000 2000

1000

















#### Thank you for your attention

More information is available at www.greenergy-project.eu



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006963 (GreEnergy).

