2D Materials for Energy Harvesting Applications and the Scaling-up Route

Max C. Lemme AMO GmbH, Aachen RWTH Aachen University – Chair of Electronic Devices

RWTH Aachen University

- Large European Technical Univ.
- 50.000 students
- Triangle:

Germany / Belgium / Netherlands

Chair of Electronic Devices

AMO GmbH

- High-Tech SME / Institute (non-profit) / Research Foundry
- 400 m² clean room
- 80 staff members in 35 funded R&D projects
- > 100 R&D partners across Europe and beyond
- Silicon technology, Nanofabrication & New Materials
 - Targeted applications
 - Nanoelectronics, Sensors, Flexible Electronics
 - Nanophotonics
 - Quantum Technologies
 - Neuromorphic Computing
 - Environmental Nanotechnology
- Mission: Technology Transfer
 - R&D Partners & Start Ups (Black Semiconductor, Protemics, AMOtronics)

Graphene: Crystal Properties

- sp² bonded carbon atoms (~4,3eV)
- Graphite: stacked layers of graphene
- interlayer bond: v.d. Waals

- Lattice constant: a = 0.246 nm
- "Thickness": d = 0.34 nm

Year of 1st introduction

6

Lemme et al., Nat. Comm., 2022

imec 20-Year Semiconductor Roadmap

More Moore

- 2D Nanosheet FETs
 - Ultimate electrostatic control
 - No loss of mobility
 - − BEOL integration \rightarrow 3D

Source: IMEC

Max Lemme

https://www.imec-int.com/en/articles/imec-introduces-2dmaterials-logic-device-scaling-roadmap

Radosavlevic et al., IEEE Spectrum, 2022

2D-Integration: Opportunities

Graphene and 2D materials:

- + Ultra broad band spectral response (graphene, PtSe₂)
- + Large scale production (CVD)
- + High conductivity
- + mechanical Flexibility
- + Integrability
- \pm Gate tunability
- Low absolute absorption

Graphene /silicon Schottky diodes

- Vertical Schottky diode architecture
- High responsivity
- Ease of Integration
- Potential for infrared detection
- Potential for flexible substrates

b

Riazimehr *et al.*, SSE, 2016 Riazimehr *et al.*, ACS Photonics, 2017 Riazimehr *et al.*, ACS Photonics, 2019

Graphene

Cr/Au

Cr/Au

SiO₂

Si

Graphene / silicon Schottky diodes

- Vertical device architecture
- High responsivity
- Ease of Integration
- Potential for infrared detection
- Potential for flexible substrates
- Shockley equation:

Max Lemme

$$I = I_S[\exp\left(\frac{qV_d}{nk_BT}\right) - 1]$$

- Ideality factor n =1.52
- Barrier height $Ø_b = 0.66 \text{ eV}$
- p doping due to exposure to ambient atmosphere

2D Materials Center

- Interdigitated diode layout
- Very high spectral response / maximum responsivity (635 mA/W) ightarrow 1.5x pure Si
- Very high quantum efficiency (>80%)
- Enabled by inversion channel under MOS structure

Graphene / Quantum Dot Integration for IR Photodetection

Rectennas

- High RF-to-DC conversion efficiency demonstrated with monochromatic MHz-GHz sources (>90% at 2.45 GHz)
- Bottleneck in adapting to higher frequencies: response time of the rectifier
- Metal-insulator-metal diodes
 - Fast response time due to majority charge carrier transport
 - Usually low responsivity, low rectification efficiency
- Metal-insulator-graphene diodes
 - Enhanced responsivity
 - Reduced junction capacitance increases frequency response

Sinohara, River Publishers **2017** Hemmetter et al., ACS Applied Electronic Materials **2021**

Ballistic Rectification

- **Ballistic rectifier**
 - Charge carrier scattering occurs primarily at the device edges
 - No potential barrier inhibits current \rightarrow zero-bias operation
- Two-terminal and four-terminal devices have been demonstrated
 - GaAs-AlGaAs and InAs/AlGaSb heterostructures
 - Si nanowires
 - graphene
- Long mean free path requires high charge carrier mobility

Passi et al., 2017 Silicon Nanoelectronics Workshop, 2017 Song et al., Phys. Rev. Lett. 1998 White et al., ACS Applied Nano Materials 2023 Auton et al., Nat Communications 2016

Ballistic Transport in Graphene

- Graphene: mobility up to 350,000 cm²/Vs
 - On insulating substrates
 - At room temperature
 - With scalable material growth techniques (CVD)
- Mean free path > 28μm in CVD graphene
- Ballistic reflection especially important at the graphene edge

Banszerus *et al., Nano Letters* 2016 Banszerus *et al., Sci. Adv.* 2015 De Fazio *et al., ACS Nano*, 2019

2D-CMOS Integration: Challenges

Neumaier, Pindl, Lemme, Nature Materials, 2019 Akinwande *et al.*, Nature, 2019 Illarionov *et al.*, Nature Communications, 2020 Quellmaltz *et al.*, Nature Communications, 2021 Lemme *et al.*, Nature Communications, 2022

Growth

- Catalytic CVD on metals
- Temperatures: 400-1000°C
- Quality

Transfer process

- Quality
- Automation

Etching

• Etch stop \rightarrow ALE

Encapsulation

• ALD vs. 2D

Electrical contacts

- ✓ Graphene
- Semiconducting 2D

A number of Engineering Challenges remain before we see 2D Materials-based electronics / optoelectronics

Chemical vapor deposition (CVD)

- Catalytic growth on Ni, Cu, Ru, Ir, TiC, Ta...
- + Process Temperatures: 850-1000°C
- + Transfer to random substrates
- Transfer process
- + High potential for large areas (R2R)
- Monolayer vs. multilayer control (solubility)
- Quality (grain boundaries, defects etc.) S. Kataria et al., physica status solidi (a), 2014., 2014

Etching method	Bubble method	Capillary method
Chemical process	Electrochemical process	Physical process (Capillary effec
Copper is etched away	Copper is removed by bubbles created at the interface	Copper is removed by water between copper and graphene
Etchant: FeCl ₃ , Sodiumpersulfa	t∉lectrolyte: NaOH	Reactant: DI-Water
Duration: 1h 30min	Duration: 30s	Duration: 8h
Max Lemme	Aachen Graphene & 2D Materials Center	

Integration challenge: contamination

- Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and
- Total reflection x-ray fluorescence (TXRF) →
 - Elemental fingerprints of residual contamination with a sensitivity better than 10⁹ atoms/cm².

ToF SIMS ⁶³Cu⁺ and ⁵⁶Fe⁺ maps on the corner of a graphene layer on SiO₂

European 2D Experimental Pilot Line

- H2020 project to develop technology (not a specific application)
- Start in 10/2020, 4 years, 20 M€ funding
- Goal: technology transfer to Europractice and European Industry

1. Development of tools & materials

Industrial Advisory Board		
X-FAB		
AMS		
NXP		
Infineon		
STMicroelectronics		
Emberion		
Nokia		
ELMOS		

European 2D Experimental Pilot Line

Development of tools, modules and platforms in parallel with the offer of MPW runs.

28

European Commission

The 2D Experimental Pilot Line

Multi-Project Wafer Run #1

Overall applications

35 applications => 14 participating customers

Aalto-yliopisto

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006963 (GreEnergy).

More information is available at www.greenergy-project.eu

