

2nd GreEnergy Workshop Wideband Optical Antennae for Use in Energy Harvesting Applications

Energy Harvesters: Challenges in Circuit Design

Mesut Inac, IHP Microelectronics GmbH

- □ Introduction
- Simulation environment
- Rectenna as a circuit model
- Possible matching configurations
- □ Circuit Design in GreEnergy
- Conclusion

□ Introduction

- IHP Microelectronics
- Circuit-Design Department
- Rectification
- Matching
- Simulation environment
- Rectenna as a circuit model
- Possible matching configurations
- □ Circuit Design in GreEnergy
- Conclusion

Introduction | IHP Microelectronics

Vertical research concept from materials research and technology to circuits and systems

> Unique selling point of a 200 mm pilot line for stateof-the-art BiCMOS technologies, operated under industry-oriented conditions, 24/7, for the provision of prototypes and small batches

Ca. 35 Third-party fun FMD): € 1

Ca. 350 employees

Third-party funds (2020, without FMD): € 17. 3 million

Institutional funding (2020): €33.5 million (of which €21 million operating budget, €12.5 million investment funds)

Bridging the gap between basic research and application through close cooperation with universities and industry

Qualified technological platform with direct access for science and industry

Introduction | IHP Microelectronics

Vertical Approach

- □ 5 Scientific Departments
 - Materials Research
 - Technology
 - Circuit Design
 - System Architectures
 - Wireless Systems

Cleanroom Area
 ~ 1.000 m² class 1
Technology
 RF SiGe BiCMOS
Wafer Diameter
• 200 mm
Capacity
 100 Wafer Starts/Week
Technology Level
• 0.25 μm & 0.13 μm
Operation Mode
 24 h, 7 Days/Week
SiGe BiCMOS Preparation Time
 ≥ 1.7 Days/Level

Introduction | Circuit Design @ IHP

Circuit-Design Department: 4 Research Groups

Millimeter-Wave & THz **Converters & High-Speed Energy-Efficient Wireless & High Data-Rate Communication Circuits** Sensor Circuits Logic Circuits Analog Circuits - Wireless data - mm-Wave wireless -O ADC and DAC in GHz - Wake-up receiver communication sampling range communications - Impulse-Radio -O Broadband circuits for - High-speed logic Ultra-Wide Band (UWB) -O Sensing systems for mmwave to sub-THz optical fiber -O Serializer and de- Sensor readout circuits communications frequency range serializer ICs -O Radiation-hard RF - Monolithic-integrated -O RF to millimeter-wave Neuromorphic circuits biosensors EPIC computing -• Applications at cryogenic -O Hetero-integrated SiGetemperatures InP

D-Band 200Gbps

Transceiver

Segmented MZ-Modulator Driver

240GHz Radar Transceiver

UWB Transceiver

Introduction

- Energy harvester architecture and operation
- □ Efficiency
 - Reflections
 - Impedance matching
 - Power transfer
- Regulated supply
 - Stable
 - Adaptable
 - Consumes power (!!!)

Introduction | Rectification

□ Rectification

9 of 27

Introduction

- □ Impedance matching
 - Maximum power transfer
 - Maximum efficiency
- Power delivered to load:

$$P_L = I^2 R_L = \left(\frac{V_S}{R_S + R_L}\right)^2 R_L = \frac{V_S^2}{\frac{R_S^2}{R_L} + 2R_S + R_L}$$

Minimize denominator to maximize ${\rm P}_{\rm L}$

$$\frac{d}{dR_L} \left(\frac{R_S^2}{R_L} + 2R_S + R_L \right) = 0 \qquad \frac{R_S^2}{R_L^2} = 1$$
$$R_L = \pm R_S \qquad Z_L = Z_S^*$$

Efficiency perspective:

 R_S

$$\eta = \frac{P_L}{P_{Total}} = \frac{I^2 R_L}{I^2 (R_L + R_S)} = \frac{R_L}{R_L + R_S} = \frac{1}{1 + \frac{R_S}{R_L}}$$
$$I \neq 0$$
$$R_L \to \infty; I \to 0$$

Introduction

Simulation environment

- Rectenna as a circuit model
- Possible matching configurations
- □ Circuit Design in GreEnergy
- Conclusion

Simulation Environment

- Requirements for a simulation environment:
 - Schematic simulations
 - Electromagnetic solver
 - Packaging and interconnects

Keysight ADS[®]

*Keysight RF-pro website

- □ Introduction
- □ Simulation environment
- Rectenna as a circuit model
- Possible matching configurations
- □ Circuit Design in GreEnergy
- Conclusion

Rectenna as a Circuit Model

*Hemmetter, et.al. 2021, Terahertz Rectennas on Flexible Substrates Based on One-Dimensional Metal-Insulator-Graphene Diodes

- □ Introduction
- Simulation environment
- Rectenna as a circuit model
- Possible matching configurations
- □ Circuit Design in GreEnergy
- Conclusion

Possible Matching Configurations

Matching aspects

- DC matching
 - □ After AC→DC conversion
- High frequency matching
 - Antenna load
- Constructing arrays
 - Collecting more currents

- Integration
 - On board: low frequency to quasi DC
 - On chip: high frequency portions of the system (if any in this case)

- □ Introduction
- Simulation environment
- Rectenna as a circuit model
- Possible matching configurations
- □ Circuit Design in GreEnergy
- Conclusion

Circuit Design in GreEnergy

Devices

- Nanoantenna
- Geometric diode
- Ballistic diode
- Supercapacitor

Models

- Extracted from measurement results
- Library in the simulation environment
- Enable the design and optimization of circuit blocks and systems
- □ Common test-bench to simulate and compare variants of the system

Library of Device Models

Antenna model from simulations Rectenna model

Ballistic diode model

Geometric diode model

Supercapacitor model

Library of Device Models

□ Geometric diode:

Library of Device Models

□ Ballistic diode:

Current (µA)

-70 -

-50 -40 -30 -20 -10 0 10 20 30 40 50

□ Supercapacitor:

Circuit Design in GreEnergy

- □ Test bench for the simulation of:
 - Time-domain behavior
 - Frequency-domain behavior
 - Rectification efficiency

Target

- Higher rectification
- Lower reflections
- Better matching

Circuit Design in GreEnergy

Overview

- □ Introduction
- Simulation Environment
- Rectenna as a Circuit model
- Possible Matching Configurations
- □ Circuit Design in GreEnergy
- Conclusion

Conclusion

- Established suitable simulation environment
- □ Enabled software tools for e.g. maximization of energy transfer
- Established approach to build models
- □ Fitted models to available measurements
- Test simulations of different configurations
- Best configurations will need to be studied once measurements and models of functional devices will be available

Thank you for your attention!

Mesut Inac

IHP GmbH – Innovations for High Performance Microelectronics Im Technologiepark 25 15236 Frankfurt (Oder) Tel. +49 (0) 335 5625 633 E-Mail: inac@ihp-microelectronics.com

Thank you!

www.greenergy-project.eu www.linkedin.com/company/greenergy-project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006963 (GreEnergy).

