

Characterization of two- and three-terminal graphene diodes by fully-ballistic or semi-classical methods

Davide Mencarelli

Università Politecnica delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy

9 September 2024

Research objectives of GREENERGY

1. Optical nanoantennas:

wide bandwidth, dual polarization, angle independent

2. Nano-rectifiers based on graphene geometric diodes to optical frequencies

3. On-chip integration of antenna rectifier with **energy storage** components

- 1. DFT based approach
- 2. MonteCarlo
- 3. Scattering Matrix (Landauer)
- 4. Drift-diffusion

Very different approaches with completely different assumptions

Optical simulation of the proposed architecture

Modelling charge transport in geometric diodes

The ratchet effect is a collective motion of particles in a preferential direction, due to spatially-asymmetric perturbations

An external action is needed, to have the 2nd Law of thermodynamics preserved

L. Ermann and D. L. Shepelyansky: Relativistic graphene ratchet

In our case, EM fieds at optical frequencies

Summarizing, two 1) breaking of spatial or temporal inversion symmetryconditions required: 2) breaking of equilibrium (thermal, electrical mechanical)

#1 Modelling of geometric diodes: DFT based approach

6 of 17

BRUGES

#2 Modelling of geometric diodes: MonteCarlo ===

7 of 17

#3 Modelling of geometric diodes: Scatt. Matrix ====

BRUGES

9-12 SEPTEMBER

#3 Modelling of geometric diodes: Scatt. Matrix ====

From 2-terminal devices to 3-(or more) terminal devices

Received 20 October 2022, accepted 11 November 2022, date of publication 17 November 2022 date of current version 30 November 2022. Digital Object Identifier 10.1109/ACCESS.2022.3223134

RESEARCH ARTICLE

Current-Voltage Characterization of Multi-Port Graphene Based Geometric Diodes for High-Frequency Electromagnetic Harvesting

DAVIDE MENCARELLI^{1,2}, GIAN MARCO ZAMPA[©]¹, (Graduate Student Member, IEEE), AND LUCA PIERANTONI^{01,2}

V _{DS} =0.16 V			
Width	V _{oc}	I _{SC}	I _{DS}
10 nm	25 mV	≈ 9 uA	\approx 18 uA
20 nm	18 mV	≈ 24 uA	\approx 50 uA

#3 Modelling of geometric diodes: Scatt. Matrix ======

...the above methods require very long simulation time!

Can drift-diffusion of charges explain rectification from geometric diodes?

Electric potential

$$\nabla \cdot (\varepsilon \nabla V) = \rho = p - n$$

Electron current

Hole current

$$\nabla \cdot (\varepsilon \nabla V) = \rho = p - r$$

$$\nabla \circ (-D_n \cdot \nabla n - \alpha_n \cdot n + \gamma_n) = 0$$

 $\nabla \circ (-D_p \cdot \nabla p - \alpha_p \cdot p + \gamma_p) = 0$

 $D_{n,p}$: diffusion coefficient

The interplay between (1) asymmetric potential and (2) diffusion in an asymmetric geometry provides an asymmetric response

BRUGES

Model extension to many port devices

15 of 17

Output current (short)

Thank you!

www.greenergy-project.eu www.linkedin.com/company/greenergy-project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006963 (GreEnergy).

