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graphene 
geometric diode  

1. Optical nanoantennas:
wide bandwidth, dual polarization, angle independent

Research objectives of GREENERGY

H2020-LC-SC3-2018-2019-2020

2. Nano-rectifiers based on graphene geometric diodes to optical frequencies

3. On-chip integration of antenna rectifier with energy storage components
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https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-search;callCode=H2020-LC-SC3-2018-2019-2020


Modelling charge transport in geometric diodes

1. DFT based approach

2. MonteCarlo

3. Scattering Matrix (Landauer)

4. Drift-diffusion

Very different approaches with completely different assumptions
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The ratchet effect is a collective motion of 
particles in a preferential direction, due to 
spatially-asymmetric perturbations

An external action is needed, 
to have the 2nd Law of 
thermodynamics preserved

1) breaking of spatial or temporal inversion symmetry
2) breaking of equilibrium (thermal, electrical mechanical)

Summarizing, two
conditions required:

L. Ermann and D. L. Shepelyansky: Relativistic graphene ratchet

Semi-
disk 
holes

In our case, EM fieds
at optical frequencies

Modelling charge transport in geometric diodes



Very large asymmetric graphene 
diodes by Density Functional TB 
approach

Asymmetry

#1 Modelling of geometric diodes: DFT based approach
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[data from D. Truccolo, M. Midrio et al., UNIUD]

#2 Modelling of geometric diodes: MonteCarlo
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Example : increasing neck size
a. the I-V asymmetry decreases
b. the amount of current increases (diode
impedance decreases)
c. the reverse-bias current increases

#3 Modelling of geometric diodes: Scatt. Matrix

𝑛 = ∫𝑓 𝐸, 𝐸!
"

# $! %! "

where 𝐸# ∈ 0.2 𝑒𝑉 − 0.3 𝑒𝑉

Current from 
scattering parameters

Charge density



From 2-terminal devices to 3-
(or more) terminal devices
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VDS=0.16 V
Width VOC ISC IDS
10 nm 25 mV » 9 uA » 18 uA
20 nm 18 mV » 24 uA » 50 uA
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#3 Modelling of geometric diodes: Scatt. Matrix



ZLThe load provide the 
output constrain:
ZL = VOUT /IOUT
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Quantum coherent transport 
(Tight-Binding wave-functions)
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#3 Modelling of geometric diodes: Scatt. Matrix
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∇ " 𝜀∇𝑉 = 𝜌 = 𝑝 − 𝑛

∇ ∘ (-𝐷𝑛 " ∇𝑛 - 𝛼𝑛 " 𝑛+𝛾𝑛)=0

The interplay between (1) asymmetric potential and (2) diffusion in an 
asymmetric geometry provides an asymmetric response

Dn,p: diffusion coefficient

Electron current

Electric potential

∇ ∘ (-𝐷𝑝 " ∇𝑝 - 𝛼𝑝 " 𝑝+𝛾𝑝)=0Hole current

#4 Modelling of geometric diodes: Drift-Diffusion

..the above methods require
very long simulation time!

Can drift-diffusion of charges explain 
rectification from geometric diodes?



#4 Modelling of geometric diodes: Drift-Diffusion
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Comsol 
portable 
application

Arbitrary geometry

../Downloads/app_diodo.app
../Downloads/app_diodo.app
../Downloads/app_diodo.app
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Example: 2-port bipolar transport case
a) b)

c) d)
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#4 Modelling of geometric diodes: Drift-Diffusion



∇ " 𝜀∇𝑉 =𝜌 ∇ ∘ (-𝑐 " ∇𝑛 - 𝛼 " 𝑛+𝛾)=0

Model extension to many port devices

#4 Modelling of geometric diodes: Drift-Diffusion
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#4 Modelling of geometric diodes: Drift-Diffusion
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#4 Modelling of geometric diodes: Drift-Diffusion
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Thank you!

This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 101006963 (GreEnergy).

www.greenergy-project.eu
www.linkedin.com/company/greenergy-project 

17 of 17


