

Planar THz Devices and Graphene Tunnelling Diodes

Aimin Song

Department of Electrical Engineering and Electronics University of Manchester

Acknowledgements

Gregory Auton, Arun Singh, Hu Li, Tianye Wei, Josh Wilson, Joseph Brownless

Department of Electrical and Electronic Engineering, University of Manchester, UK

Baoqing Zhang, Zihao Zhang, Mingyang Wang, Qian Xin, Jiawei Zhang Center of Nanoelectronics, School of Microelectronics, Shandong University, China

Planar THz Devices and Graphene Tunnelling Diodes

🗩 🚸 Background

- How to determine 2D material thickness
- Graphene tunnelling transistors
- Planar THz nanodevices
- Semiconducting graphene nanoribbons
- Summary

Graphene: A Super Material

- Nobel Prize in Physics 2010
- Thinnest imaginable material
- Strongest material ever measured (theoretical limit)
- Stiffest known material (stiffer than diamond)
- Most stretchable crystal (up to 20% elastically)
- Record thermal conductivity (outperforming diamond)
- Highest current density at room T (million times of that in copper)
- Lightest charge carriers (zero rest mass)
- Most impermeable (even He atoms cannot squeeze through)
- Highest intrinsic mobility (>100 times that of Silicon)
- Longest mean free path at room temperature (micron range)

2D materials: a huge family

Too thin!

Difficult to identify atomic layer numbers!

But the first thing in any experiment is to identify the exact thickness.

Properties sensitive to thickness

Graphene: Problem 2

Zero bandgap semimetal It is not a semiconductor!

So, it is not of much use for electronics as the active layer.

Use of Graphene in Devices

Use of Graphene in Devices

✓ Try to generate a bandgap

Graphene quantum dots

- Only very small bandgap achieved
- Edge imperfection due to lithography limitation

Planar THz Devices and Graphene Tunnelling Diodes

- Background
- How to determine 2D material thickness
 - Graphene tunnelling transistors
 - Planar THz nanodevices
 - Semiconducting graphene nanoribbons
 - Summary

Methods to identify the number of atomic layers

Atomic force microscope (AFM)

Small 7, 465–468 (2011).

Nature 603, 259-264 (2022)

Tunneling electron microscopy (TEM)

Highly time consuming and expensive

Optical reflection method

Most commonly used in labs

- Very low contrast
- Sensitive to wavelength, substrate thickness, incapable on transparent substrate....
- Contrast usually < 10 % for single-layered graphene

< 2% for single-layer h-BN (transparent)

• Very rare to see single-layered h-BN based devices

Dark-field method for BN flakes

Dark-field method for graphene flakes

Per-layer contrast increased from 5% to 70%

Rayleigh scattering and charge-dipole model

MANCHESTER 1824

Polarization distribution and wavelength dependence of Rayleigh scattering

Good agreement between our model and experiment

Application to other 2D materials

• Highly linear dependence of the contrast on the number of layers

Large-area identification, transparent substrate

Large field of vision achieved, up to 0.8 x 1.2 mm²

on Sapphire

Feasible on transparent substates!

Comparison with optical reflection method

	Materials	Method	Per layer contrast	Detection range	Optimized wavelenth of the incident light	Optimized thickness of the SiO₂ layer	Reference
1	graphene	ORC	15%	2 - 4 L	550 - 600 nm	285 nm	Ref.S1
2	Graphene;MoS₂	Deep learning;ORC	N.A.	2 -5 L	White light	300 nm	Ref.S2
3	graphene	ORC	6%	1 - 10 L	550 nm	285 nm	Ref.S3
4	graphene	ORC	7.70%	2-5L	550 nm	300 nm	Ref.S4
5	h-BN	ORC	2.50%	1 - 100 L	516 nm	282 nm	Ref.S5
6	h-BN	Raman;ORC	1.50%	7 -38 L	525 nm	290 nm	Ref.S6
7	h-BN	Raman;ORC	2.50%	2 - 4 L	500 or 570 nm	290 nm	Ref.S7
8	MoS₂	Deep learning;ORC	N.A.	1 - 5 L	470 - 850 nm	270 nm	Ref.S8
9	MoS₂	ORC	9%	1 - 15 L	White light, with RGB channel	300 nm	Ref.S9
	WSe ₂	ORC	14%	1 - 14 L	White light, with RGB channel	300 nm	
	MoS₂	ORC	35%	1 - 15 L	White light, with RGB channel	90 nm	
	WSe ₂	ORC	38%	1 - 14 L	White light, with RGB channel	90 nm	
10	Graphene h-BN MoS₂	Dark-field Dark-field Dark-field	70% 40% 6000%	1 ->100 L 1 ->100 L 1 ->100 L	White light, better at shorter wavelength	Not required	This work

- Contrast for graphene increased by a factor ~ 10
- Contrast for BN increased by a factor ~ 20
- Contrast for MoS₂ increased by a factor ~ 200

Planar THz Devices and Graphene Tunnelling Diodes

- Background
- How to determine 2D material thickness
- Graphene tunnelling transistors
 - Planar THz nanodevices
 - Semiconducting graphene nanoribbons
 - Summary

Resonant tunnelling diode

- Predicted by Tsu and Esaki in 1973
- Demonstrated by Chang, Esaki and Tsu in 1974
- Room-temperature quantum device
- Negative differential resistance
- Applications: high-frequency oscillators (>1 THz), multi-value logic, memory, etc

Tsu R, Esaki L. APL, 1973, 22: 562 Chang L L, Esaki L, Tsu R. APL, 1974, 24: 593

Resonant tunnelling diode for THz

Maekawa T, Kanaya H, Suzuki S, Asada M. Applied Physics Express, 2016, 9(2): 024101.

Izumi R, Suzuki S, Asada M. 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2017.

Asada M, Suzuki S. Sensors (Switzerland), 2021, 21(4): 1384.

- Oscillators up to 1.98 THz
- Currently used as solid-state THz emitter at 300K

Graphene resonant tunnelling diode

Britnell L et al. Nature Communications, 2013, 4: 1794.

- Atomically flat 2D materials extremely suitable for tunnelling diodes
- 2D-to-2D tunnelling is much more ideal than conventional 3D-2D-3D tunnelling
- Single-barrier graphene/BN/graphene diode demonstrated in 2013
- Potentially even higher speed without the so-called dwell time limitation
- Difficulty: identify the atomic-layer numbers of very thin 2D materials

State of the art

Berger P R, Ramesh A. Amsterdam: Elsevier, Comprehensive Semiconductor Science and Technology, 2011, 5:176-241. Burg G W, Prasad N, Fallahazad B, et al. Nano Letters, 2017, 17(6): 3919–3925. Kinoshita K, Moriya R, Okazaki S, et al. Nano Letters, 2022, 22(12): 4640–4645. Srivastava P K, Hassan Y, de Sousa D J P, et al. Nature Electronics, 2021, 4(4): 269–276. Al-Khalidi A et al. IEEE Transactions on Terahertz Science and Technology, 2020, 10(2): 150-157.

Zihao Zhang et al. Nano Letters, 23, 8132 (2023)

- Helped by the dark field method to identify thin 2D material thickness
- Peak to valley ratio (PVR) depends on area, perimeter and area/perimeter

MANCHESTER 1824

Controlled tests on the same device

- Room temperature PVR = 14.9
- A factor of 380% increase from the previous record

Zihao Zhang et al. Nano Letters, 23, 8132 (2023)

Zihao Zhang et al. Nano Letters, 23, 8132 (2023)

Zihao Zhang et al. To be published

- Oscillation frequency: 11 GHz
- Previous highest: 2 MHz
- Increased by 3 orders of magnitude

Zihao Zhang et al. To be published

Planar THz Devices and Graphene Tunnelling Diodes

- Background
- How to determine 2D material thickness
- Graphene tunnelling transistors
- Planar THz nanodevices
 - Semiconducting graphene nanoribbons
 - Summary

Diode that layman can understand

Energy bands at equilibrium

Ballistic Rectifier

Working principle in the semi-classical regime.

Functions like a Bridge Rectifier!

Only experts understand!

1st diode that layman can understand!1st diode having intrinsic zero threshold!

InGaAs ballistic rectifier characteristics

Phys. Rev. Lett. 80, 3831; Phys. Rev. B59, 9806

Japn. J. Appl. Phys. 40, L909; Appl. Phys. Lett. 79, 1357

- New device concept and working principle
- ✓ Zero threshold, no need of DC biasing
- ✓ Parabolic (not exponential), quadratic response

High mobility graphene & 1D contact

Hall bars by e-beam lithography

BN enables ultralow surface states/traps

1D contact to reduce series resistance

High-mobility graphene

15

250K

200K

50K

20

5

10

holes

G. Auton, et al, Nature Communications, 7:11670 (2016)

Microwave detection up to 680 GHz

Imaging at 640 GHz

- First graphene based THz imaging (resolution ~ 1 mm)
- Collaboration with University of Montpellier
- May be exploited as THz camera for airport security / medical imaging

G. Auton, et al., Nano Letters, 17, 7015-7020 (2017)

Planar THz Devices and Graphene Tunnelling Diodes

- Background
- How to determine 2D material thickness
- Graphene tunnelling transistors
- Planar THz nanodevices
- Semiconducting graphene nanoribbons
 - Summary

Zero bandgap semimetal It is not a semiconductor!

So, it is not of much use for electronics as the active layer.

Graphene nanoribbons (GNRs)

Graphene nanoribbons TFTs

GNR TFT on/off ratio >10⁵
Previous graphene TFT on/off ratio only ~ 10

46

MANCHESTER 1824

Graphene nanoribbon photodetectors

M.Y. Wang, Nano Lett. 24, 165 (2024)

Graphene nanoribbon photodetectors

M.Y. Wang, Nano Lett. 24, 165 (2024)

48

Graphene nanoribbon photodetectors

-5 V 1052 3.13×10 ¹³ 2×10	
	0 ⁵
0 V 1.04 2.45×10 ¹² 200	C

M.Y. Wang, Nano Lett. 24, 165 (2024)

49

MANCHESTER 1824

Graphene nanoribbon thermoelectric generator

Graphene nanoribbon thermoelectric generator

Summary

- Background: Graphene too thin and not a semiconductor
- How to determine 2D material thickness?
 - Edge Rayleigh scattering+ dark field
- Graphene tunnelling transistors:
 - Unexpected size and geometry dependence
- Planar THz nanodevices:
 - Device that does not need a bandgap and zero threshold
- Semiconducting graphene nanoribbons
 - Eg=1.8 eV, high on/off FETs, photodiodes, thermoelectric generators

Thank you!

